Jon,
I am using the code below for my pwm and it does not change the setpoint (the motor rotates at the same speed and in the same direction regardless of the input).
I must be doing something wrong. Please let me know your suggestions on how to modify this code to make it work properly.
--------------------------------------------------------------------------------
--
-- FileName: pwm.vhd
-- Dependencies: none
-- Design Software: Quartus II 64-bit Version 12.1 Build 177 SJ Full Version
--
-- HDL CODE IS PROVIDED "AS IS." DIGI-KEY EXPRESSLY DISCLAIMS ANY
-- WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
-- PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL DIGI-KEY
-- BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
-- DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
-- PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
-- BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),
-- ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.
--
-- Version History
-- Version 1.0 8/1/2013 Scott Larson
-- Initial Public Release
-- Version 2.0 1/9/2015 Scott Larson
-- Transistion between duty cycles always starts at center of pulse to avoid
-- anomalies in pulse shapes
--
--------------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
ENTITY pwm IS
GENERIC(
sys_clk : INTEGER := 50_000_000; --system clock frequency in Hz
pwm_freq : INTEGER := 100_000; --PWM switching frequency in Hz
bits_resolution : INTEGER := 8; --bits of resolution setting the duty cycle
phases : INTEGER := 1); --number of output pwms and phases
PORT(
clk : IN STD_LOGIC; --system clock
reset_n : IN STD_LOGIC; --asynchronous reset
ena : IN STD_LOGIC; --latches in new duty cycle
**duty : IN STD_LOGIC_VECTOR(bits_resolution-1 DOWNTO 0); --duty cycle**
pwm_out : OUT STD_LOGIC_VECTOR(phases-1 DOWNTO 0); --pwm outputs
pwm_n_out : OUT STD_LOGIC_VECTOR(phases-1 DOWNTO 0)); --pwm inverse outputs
END pwm;
ARCHITECTURE logic OF pwm IS
CONSTANT period : INTEGER := sys_clk/pwm_freq; --number of clocks in one pwm period
TYPE counters IS ARRAY (0 TO phases-1) OF INTEGER RANGE 0 TO period - 1; --data type for array of period counters
SIGNAL count : counters := (OTHERS => 0); --array of period counters
SIGNAL half_duty_new : INTEGER RANGE 0 TO period/2 := 0; --number of clocks in 1/2 duty cycle
TYPE half_duties IS ARRAY (0 TO phases-1) OF INTEGER RANGE 0 TO period/2; --data type for array of half duty values
SIGNAL half_duty : half_duties := (OTHERS => 0); --array of half duty values (for each phase)
BEGIN
PROCESS(clk, reset_n)
BEGIN
IF(reset_n = '0') THEN --asynchronous reset
count <= (OTHERS => 0); --clear counter
pwm_out <= (OTHERS => '0'); --clear pwm outputs
pwm_n_out <= (OTHERS => '0'); --clear pwm inverse outputs
ELSIF(clk'EVENT AND clk = '1') THEN --rising system clock edge
IF(ena = '1') THEN --latch in new duty cycle
half_duty_new <= conv_integer(duty)*period/(2**bits_resolution)/2; --determine clocks in 1/2 duty cycle
END IF;
FOR i IN 0 to phases-1 LOOP --create a counter for each phase
IF(count(0) = period - 1 - i*period/phases) THEN --end of period reached
count(i) <= 0; --reset counter
half_duty(i) <= half_duty_new; --set most recent duty cycle value
ELSE --end of period not reached
count(i) <= count(i) + 1; --increment counter
END IF;
END LOOP;
FOR i IN 0 to phases-1 LOOP --control outputs for each phase
IF(count(i) = half_duty(i)) THEN --phase's falling edge reached
pwm_out(i) <= '0'; --deassert the pwm output
pwm_n_out(i) <= '1'; --assert the pwm inverse output
ELSIF(count(i) = period - half_duty(i)) THEN --phase's rising edge reached
pwm_out(i) <= '1'; --assert the pwm output
pwm_n_out(i) <= '0'; --deassert the pwm inverse output
END IF;
END LOOP;
END IF;
END PROCESS;
END logic;
